The ImagEM camera is a newly developed back-thinned electron multiplying CCD camera. This new generation camera incorporates the latest Hamamatsu engineering and technology to provide a high speed readout rate of 32 frames/s at full spatial resolution and 16 bit digitization. Features include maximum QE over 90% and cooling performance down to –90 °C to minimize noise (C9100-13).

The ImagEM includes two selectable readout modes for applications such as real time imaging of low light fluorescence and ultra low light luminescence detection.

New features (EM gain protection, EM gain readjustment and Direct EM gain control) significantly improve operational stability and functionality, especially with high gain imaging used for live cell fluorescence. Additional functionality and image improvements are now possible with real time image processing functions. Image processing that previously required software manipulation after readout can now be done in the camera itself at full frame rates.

A high resolution version of the ImagEM, the C9100-14, has been added to the product line-up.
Hamamatsu’s line-up of advanced Electron Multiplying CCD cameras

- Choice of CCD formats to suit your application
- Shared advanced features and technology

APPLICATIONS

- Fast frame rates and short exposures of living cells with low excitation fluorescence
- Protein-protein interaction
- Calcium waves in cell networks and intracellular ion flux
- Real time spinning disk confocal microscopy
- Single molecule imaging with TIRF microscopy
- Fluorescence in-vivo blood cell microscopy
- Gene expression imaging using luminescence

Sample of luminescence imaging (C9100-13)

Luminescence imaging of HeLa cells expressing Renilla Luciferase.

- Objective lens: 10x
- Cooling method: Water cooling (~80 °C)
- EM gain: 200x
- Exposure time: 5 min

Sample of single molecule imaging (C9100-13)

Single fluorescent molecules in HeLa cells expressing H2B-GFP fusion protein.

- EM gain: 1200x
- Exposure time: 30.5 ms

Data courtesy of:
- Dr. Makio Tokunaga, National Institute of Genetics
- Dr. Kumiko Sogawa, RIKEN RCAF
- Dr. Hiroshi Kimura, HMRF Kyoto Uni. Faculty of Medicine
Wide range of applications from “Real time imaging of low light fluorescence” to “Ultra low light detection”

Benefits of ImagEM Cameras

High Sensitivity

- **High quantum efficiency of over 90%**
 This camera provides QE of over 90%. It is suitable for visible to near infrared applications.

- **High EM gain of maximum 1200 x**
 Electron multiplying (EM) gain feature is ideal for live cell imaging because of shorter exposure times and reduced excitation light levels.

![Spectral Response](image)

<table>
<thead>
<tr>
<th>Wavelength (nm)</th>
<th>Quantum efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>100</td>
</tr>
<tr>
<td>500</td>
<td>90</td>
</tr>
<tr>
<td>600</td>
<td>80</td>
</tr>
<tr>
<td>700</td>
<td>70</td>
</tr>
<tr>
<td>800</td>
<td>60</td>
</tr>
<tr>
<td>900</td>
<td>50</td>
</tr>
<tr>
<td>1000</td>
<td>40</td>
</tr>
</tbody>
</table>

- **Low Noise**

 - **Highly stabilized control of CCD temperature with either water or forced-air cooling**
 Water or forced-air cooling is selectable for any application and optimal cooling temperature can be set in each cooling mode.

 - **Minimal dark noise is another benefit of stable cooling performance**
 Cooling temperature of C9100-13 is -80 °C and C9100-14 is -70 °C (Water cooling, water temperature +20 °C).
 Superior cooling performance provides minimum dark noise.

 - **Optimized CCD drive methods significantly reduce the clock induced charge (CIC)**
 CIC is internally optimized for either fast readout or long term integration by the camera.

![Comparison of sensitivity with conventional camera](image)

Luminescence imaging of HeLa cells expressing Renilla Luciferase.
- Conventional cooled CCD camera
- ImagEM (C9100-13)

(Water cooling, EM gain 1200x)

![Comparison of noise (C9100-13)](image)

Comparison of two clock induced charge images (EM gain: 1200 x, Exposure time: 30 ms, no light, enlarged 100 x 100 pixel region)
- Conventional CCD drive method
- Unique low noise CCD drive method

Intensity profile of horizontal line
Highly stabilized EM gain by cooling temperature control
Maintaining stable cooling temperature is essential to stable gain settings required for superior performance in long duration imaging and analysis. Very precise control of the cooling temperature in the ImagEM Enhanced is a key benefit.

Examples of temperature stability and EM gain stability (C9100-13)
- **Water cooled**
 - Temperature stability: ±0.01 °C
 - EM gain stability: ±1%
 - Cooling temperature: -65 °C
 - Water temperature: ±20 °C
 (Operated with circulating water cooler)

- **Forced-air cooled**
 - Temperature stability: ±0.03 °C
 - EM gain stability: ±1%
 - Cooling temperature: -65 °C
 - Room temperature: Stable at ±20 °C

Stability of mean bias value (Digitizer Offset)
The baseline is nearly constant over time providing signal stability for long term measurements.

Example of baseline variance (C9100-13)
- Cooling method: Water cooled
- Clock: 11 MHz
- EM gain: 1200x
- Exposure time: 30.5 ms
- No light

EM gain protection
To maintain performance and help reduce gain ageing from unintentional excessive light conditions, the ImagEM Enhanced can be programmed to send a warning message or audible alarm when too much light is detected.

EM gain readjustment
If EM gain degradation does occur, a built-in feature of the ImagEM Enhanced readjusts the gain to the original values with a user command.

Direct EM gain control
Direct control of EM gain multiplying factor using a linear scale is simple, intuitive and quantitative.
- This feature is available when the camera is operated with DCAM-API.
 (DCAM-API is software driver which support HAMAMATSU digital cameras.)
Wide range of applications from “Real time imaging of low light fluorescence” to “Ultra low light detection”

Various Imaging Features

- **Dual readout mode**
 Select a readout mode for optimal image acquisition based on the sample brightness or desired frame rate or exposure time.
 - EM-CCD readout (For short exposure, high sensitivity imaging)
 - NORMAL-CCD readout (For long exposure, high resolution imaging)

- **Photon imaging mode (Patent pending)**
 A unique technology which enhances to support for visualizing or imaging low light signals. It significantly improves signal visibility even at short exposure times and is effective for single molecule fluorescence imaging or rapid observation of luminescence signals.

- **Photon imaging mode**
 OFF
 ON

- **Real time image processing features**
 The following real time processing functions are available.
 - **Background subtraction**
 Effective for reducing fluorescence in image backgrounds.
 - **Shading correction**
 This feature corrects the shading or uneven illumination in microscope images or other illumination systems.
 - **Recursive filter**
 This feature provides noise elimination in an image by weighted time based averaging.
 - **Frame averaging**
 This feature provides noise elimination in an image by simple frame averaging and less “afterimage” effect than the recursive filter.
 - **Spot noise reducer**
 This image processing function operates on random spots of intensity by comparing incoming images and eliminating signals that meet the criteria for noise in one image but not in others. This processing eliminates noise elements like cosmic rays.

- **Various trigger features**
 Synchronous readout trigger (Patent pending) and programmable trigger signal outputs are available.

Sample of EM-CCD readout (C9100-13)
Confocal calcium imaging of HeLa cell expressing yellow Cameleon 3.6. This image shows changes of histamine stimulated calcium ion with two Z positions and four time lapse.

- Objective lens: 100x
- EM gain: 300x
- Exposure time: 100 ms
- Confocal unit: CSU by Yokogawa Electric Co.
- CFP/YFP FRET: 2 wavelength imaging, W-view optics A8509
- Z scan: 19 slices/2.5 s Pezoelectric Z stage

Data courtesy of:
Dr. Kenji Nagai, Dr. Kenta Saito
Hokkaido Univ. Nikon imaging center

Sample of photon imaging mode (C9100-13)
Fluorescence beads imaged with reduced excitation light intensity. (Exposure time: 30.5 ms, EM gain: 1200x)

- Photon imaging mode OFF
- Photon imaging mode ON

Sample of NORMAL-CCD readout (C9100-13)
Luminescence imaging of HeLa cell expressing Renilla Luciferase.

- Objective lens: UApo/340 20x
- Exposure time: 5 min
- Cooling method: Water cooled (-80 °C)
- Binning: 2x2

Data courtesy of:
Dr. Kenji Nagai, Dr. Kenta Saito
Hokkaido Univ. Nikon imaging center

Dr. Kenji Nagai, Dr. Kenta Saito
Hokkaido Univ. Nikon imaging center

Objective lens: 100x
EM gain: 300x
Exposure time: 100 ms
Confocal unit: CSU by Yokogawa Electric Co.
CFP/YFP FRET: 2 wavelength imaging, W-view optics A8509
Z scan: 19 slices/2.5 s Piezoelectric Z stage

Data courtesy of:
Dr. Kenji Nagai, Dr. Kenta Saito
Hokkaido Univ. Nikon imaging center

Objective lens: UApo/340 20x
Exposure time: 5 min
Cooling method: Water cooled (-80 °C)
Binning: 2x2

Data courtesy of:
Dr. Kenji Nagai, Dr. Kenta Saito
Hokkaido Univ. Nikon imaging center
<table>
<thead>
<tr>
<th>SPECIFICATIONS</th>
<th>ImagEM Enhanced C9100-13</th>
<th>ImagEM 1K C9100-14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Camera head type</td>
<td>Hermetic vacuum-sealed air/water-cooled head</td>
<td></td>
</tr>
<tr>
<td>Window</td>
<td>Anti-reflection (AR) coatings on both sides, single window</td>
<td></td>
</tr>
<tr>
<td>AR mask</td>
<td>yes</td>
<td>No</td>
</tr>
<tr>
<td>Imaging device</td>
<td>Electron Multiplying Back-Thinned Transfer CCD</td>
<td></td>
</tr>
<tr>
<td>Effective no. of pixels</td>
<td>512 (H) × 512 (V)</td>
<td>1024 (H) × 1024 (V)</td>
</tr>
<tr>
<td>Cell size</td>
<td>16 μm (H) × 16 μm (V)</td>
<td>13 μm (H) × 13 μm (V)</td>
</tr>
<tr>
<td>Effective area</td>
<td>8.19 mm (H) × 8.19 mm (V)</td>
<td>13.3 mm (H) × 13.3 mm (V)</td>
</tr>
<tr>
<td>Pixel clock rate</td>
<td>EM-CCD readout 11 MHz, 2.75 MHz, 0.69 MHz</td>
<td>NORMAL CCD readout 2.75 MHz, 0.69 MHz</td>
</tr>
<tr>
<td>EM (electron multiplying) gain (typ.)</td>
<td>1x or 4x to 1200 x</td>
<td>1x or 10x to 1200 x</td>
</tr>
<tr>
<td>Ultra low light detection</td>
<td>Photon Imaging mode (1, 2, 3)</td>
<td></td>
</tr>
<tr>
<td>Fastest readout speed</td>
<td>31.9 frames/s to 405 frames/s</td>
<td>9.5 frames/s to 231 frames/s</td>
</tr>
<tr>
<td>Readout noise (r.m.s.) (typ.)</td>
<td>EM-CCD readout 417 frames/s (Binning option)</td>
<td>242 frames/s (Binning option)</td>
</tr>
<tr>
<td>EM gain</td>
<td>25 electrons (at 11 MHz)</td>
<td>10 electrons (at 11 MHz)</td>
</tr>
<tr>
<td>EM gain 10x (C9100-14)</td>
<td>8 electrons (at 0.69 MHz)</td>
<td>3 electrons (at 0.69 MHz)</td>
</tr>
<tr>
<td>EM gain 1200x</td>
<td>1 electron max. (at 11 MHz)</td>
<td>1 electron max. (at 0.69 MHz)</td>
</tr>
<tr>
<td>NORMAL CCD readout</td>
<td>17 electrons (at 2.75 MHz)</td>
<td>19 electrons (at 2.75 MHz)</td>
</tr>
<tr>
<td>**Full well capacity (typ.) **</td>
<td>370 000 electrons (Max. 800 000 electrons)</td>
<td>400 000 electrons (Max. 730 000 electrons)</td>
</tr>
<tr>
<td>Analog gain</td>
<td>1/2 times to 5 times</td>
<td></td>
</tr>
<tr>
<td>Cooling method / temperature</td>
<td>Forced-air cooled -55 °C stabilized (0 °C to +30 °C)</td>
<td>-55 °C stabilized (0 °C to +30 °C)</td>
</tr>
<tr>
<td>Water cooled</td>
<td>-75 °C (Room temperature : Stable at +20 °C)</td>
<td>-75 °C (Room temperature : Stable at +20 °C)</td>
</tr>
<tr>
<td>Temperature stability</td>
<td>Forced-air cooled ±0.03 °C (typ.) (Room temperature : Stable at +20 °C) (±65 °C stabilized)</td>
<td>±0.05 °C (typ.) (Room temperature : Stable at +20 °C) (±65 °C stabilized)</td>
</tr>
<tr>
<td>Water cooled</td>
<td>-90 °C (Water temperature : lower than +10 °C)</td>
<td>-80 °C (Water temperature : lower than +10 °C)</td>
</tr>
<tr>
<td>Dark current (typ.)</td>
<td>Forced-air cooled 0.01 electron/pixel/μs (65 °C)</td>
<td>0.01 electron/pixel/μs (65 °C)</td>
</tr>
<tr>
<td>Water cooled</td>
<td>0.001 electron/pixel/μs (80 °C)</td>
<td>0.001 electron/pixel/μs (70 °C)</td>
</tr>
<tr>
<td>Exposure time</td>
<td>Internal sync mode 30.5 ms or more</td>
<td>103.3 ms or more</td>
</tr>
<tr>
<td>External trigger mode</td>
<td>External trigger mode 10 μs or more</td>
<td>10 μs or more</td>
</tr>
<tr>
<td>A/D converter</td>
<td>16 bit</td>
<td></td>
</tr>
<tr>
<td>Output signal / External control</td>
<td>CameraLink</td>
<td></td>
</tr>
<tr>
<td>Sub-array</td>
<td>Every 16 lines (horizontal, vertical) size, position can be set (refer to the table on the right)</td>
<td></td>
</tr>
<tr>
<td>Binning</td>
<td>2×2, 4×4 (8×8, 16×16) ☞</td>
<td></td>
</tr>
<tr>
<td>External trigger mode</td>
<td>Edge trigger, Level trigger, Start trigger, Synchronous readout trigger</td>
<td></td>
</tr>
<tr>
<td>Trigger output</td>
<td>Exposure timing output, Programmable timing output (Delay and pulse length are variable)</td>
<td></td>
</tr>
<tr>
<td>Image processing features (real-time)</td>
<td>Background subtraction, Shading correction, Recursive filter, Frame averaging, Spot noise reducer ☞</td>
<td></td>
</tr>
<tr>
<td>EM gain protection</td>
<td>EM warning mode, EM protection mode</td>
<td></td>
</tr>
<tr>
<td>EM gain readjustment</td>
<td>Available</td>
<td></td>
</tr>
<tr>
<td>Lens mount</td>
<td>C-mount</td>
<td></td>
</tr>
<tr>
<td>Power requirements</td>
<td>AC 100 V to 240 V, 50 Hz / 60 Hz</td>
<td></td>
</tr>
<tr>
<td>Power consumption</td>
<td>Approx. 140 VA</td>
<td></td>
</tr>
<tr>
<td>Ambient storage temperature</td>
<td>-10 °C to + 50 °C</td>
<td></td>
</tr>
<tr>
<td>Ambient operating temperature</td>
<td>0 °C to + 40 °C</td>
<td></td>
</tr>
<tr>
<td>Performance guaranteed temperature</td>
<td>0 °C to + 30 °C</td>
<td></td>
</tr>
<tr>
<td>Ambient operating/storage humidity</td>
<td>70 % max. (with no condensation)</td>
<td></td>
</tr>
</tbody>
</table>
The hermetic sealed head maintains a high degree of vacuum 10^{-8} Torr, without re-evacuation.

AR mask is not placed because the proportion of CCD area to the window is large therefore reflection is quite small.

Even with electron multiplying gain maximum, dark signal is kept low level at low light imaging.

Linearity is not assured when full well capacity is over 370 000 electrons (C9100-13) or 400 000 electrons (C9100-14), because of CCD performance.

The cooling temperature may not reach to this temperature depends on the operation condition.

Water volume 1.2 liter/min.

Typical thermal charge value (not guaranteed).

Image smearing may appear when the exposure time is short.

8 x 8 and 16 x 16 binning are available on special order.

Please consult with our sales office.

C-MOS 3.3 V with reversible polarity.

Recursive filter, frame averaging, spot noise reducer cannot be used simultaneously.

Fastest readout speed is at 8x8 binning, sub-array 16.

Fastest Readout Speed

<table>
<thead>
<tr>
<th>Binning</th>
<th>C9100-13</th>
<th>Effective vertical width (Sub-array)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 x 1</td>
<td>512</td>
<td>31.9 59.6 105 170 245 315</td>
</tr>
<tr>
<td>2 x 2</td>
<td>256</td>
<td>60.9 107 172 248 318 370</td>
</tr>
<tr>
<td>4 x 4</td>
<td>128</td>
<td>112 178 254 323 373 405</td>
</tr>
<tr>
<td>8 x 8</td>
<td>64</td>
<td>177 252 320 369 401 417</td>
</tr>
<tr>
<td>16 x 16</td>
<td>32</td>
<td>248 313 360 389 405 413</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Binning</th>
<th>C9100-14</th>
<th>Effective vertical width (Sub-array)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 x 1</td>
<td>1024</td>
<td>9.5 18.4 34.3 60.4 97.7 141 182</td>
</tr>
<tr>
<td>2 x 2</td>
<td>512</td>
<td>18.4 34.2 60.4 97.6 141 182 212</td>
</tr>
<tr>
<td>4 x 4</td>
<td>256</td>
<td>34.2 60.3 97.5 141 181 211 231</td>
</tr>
<tr>
<td>8 x 8</td>
<td>128</td>
<td>60.2 97.2 140 180 210 229 240</td>
</tr>
<tr>
<td>16 x 16</td>
<td>64</td>
<td>96.6 139 178 207 226 236 242</td>
</tr>
</tbody>
</table>
SYSTEM CONFIGURATION

- Lens
- ImagEM camera head
- Computer frame grabber board
- Hose set A10424-02
- Circulating water cooler
- Commercially available software
- Video camera attachment
- Microscope
- Camera control unit
- Hose set A10424-02
- Camera head (Approx. 3.7 kg)
- Camera control unit (Approx. 3.0 kg)

OPTIONS
- Commercially available software
- Circulating water cooler
- Hose set A10424-02
- Binning option

DIMENSIONAL OUTLINES

(Unit: mm)

- Camera head (Approx. 3.7 kg)
 - 1/4-20UNC, D=8
 - EM-CCD DIGITAL CAMERA
 - 1/4-20UNC, D=8
 - 27.5
 - ±2
 - 78
 - ±1
 - 40
 - ±0.5
 - 55
 - ±0.5
 - 55
 - ±0.5
 - 78
 - ±1
 - 27.5
 - ±2

- Camera control unit (Approx. 3.0 kg)
 - 1/4-20UNC, D=8
 - 38.3
 - 230.3
 - 1

OPTIONS

- Commercially available software
- Circulating water cooler
- Hose set A10424-02
- Binning option

Learn more about ImagEM

imagemccd.com

Hamamatsu Photonics K.K.

© 2012 Hamamatsu Photonics K.K.