

LASER FREE CONFOCAL

Super-resolution with Clarity^{HS}

Application Note

P. Timmins,^a R. Juškaitis,^a E. Garcia Castano^b

^a Aurox Ltd, Oxford, UK.

b Photonics Group, Imperial College London, UK.

Figure 1. Super-resolution laser free confocal image of mouse fibroblast; Clarity^{HS} (Inset)

Introduction

The Aurox Clarity^{HS} was used to record and compare widefield, confocal and super-resolution confocal (Figure 1) images of NIH3T3 mouse fibroblast.

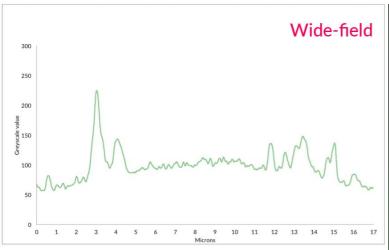
Experimental

A multi-well slide of fixed NIH3T3 mouse fibroblast was prepared where the primary antibody was for α -tublin and the secondary was conjugated with Alexa Fluor 488.

The instrument set-up consisted of an Aurox laser free confocal Clarity^{HS} device connected to a Nikon Ti-E inverted microscope, using a 63x 1.4 N.A oil immersion objective. The Clarity^{HS} was fitted with a CoolLED pE300 Ultra light source, a Hamamatsu Orca Flash 4.0 V3 sCMOS camera and an Aurox GFP-LED filter cube (ex: 466 nm, em: 525 nm).

The wide-field image (Figure 2) was first recorded using the Clarity $^{\rm HS}$ with an exposure time of 200 ms. The Aurox Visionary software and Clarity $^{\rm HS}$ were then used to automatically record a single channel time series of 100 confocal images at 0.9 μm sectioning and 200 ms exposure. The images were then automatically exported to ImageJ / Fiji using the Aurox Visionary one-click export function. 1 The first confocal frame of this time series is shown in Figure 3.

The freely available, open-source Super-Resolution Radial Fluctuations (SRRF) analytical approach, as implemented in ImageJ / Fiji was then applied to the 100 frame time series using default SRRF settings.² The resulting laser free super-resolution confocal image is shown in Figure 4.


The wide-field, confocal and super-resolution confocal images were then visually compared and the section line profile plots 1-3 were generated across the regions indicated in Figures 2-4.

Results

As expected the laser free confocal image shows a significant improvement over the wide-field image with the removal of out-of-focus signal and much enhanced contrast, revealing better defined image structure detail as shown in Plot 2 and Figure 3. The application of the SRRF analysis to the laser free confocal imagery can provide further enhanced resolution and finer image details as shown in Plot 3 and Figure 4.

Conclusions

The Aurox Clarity^{HS} laser free confocal device is an excellent tool for recording high quality confocal images in an easy to use and affordable way. Simply recording 100 frames of data over a few tens of seconds and using freely available post processing tools; such as SRRF, can provide super-resolution images without the need for expensive and difficult to use confocal microscopy equipment and software.

Plot 1. Wide-field image line profile plot

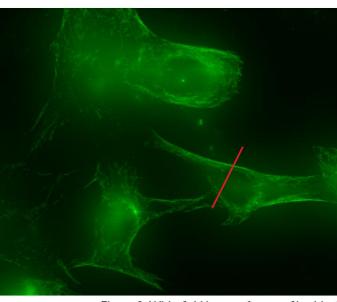
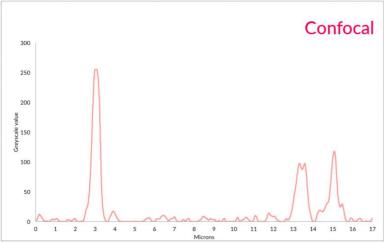



Figure 2. Wide-field image of mouse fibroblast

Plot 2. Laser free confocal image line profile plot

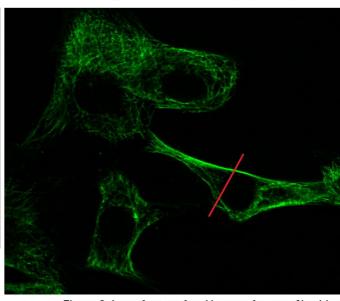
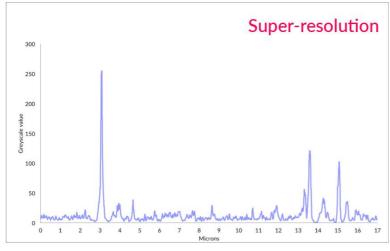



Figure 3. Laser free confocal image of mouse fibroblast

Plot 3. Super-resolution laser free confocal image profile plot

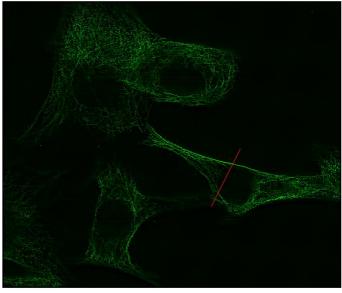


Figure 4. Super-resolution laser free confocal image of mouse fibroblast